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SUMMARY  

The paper deals with the examination of the relative efficiency of two mixed designs 
with reference to the accuracy of comparisons estimation of treatment parameters. One 
of the designs is called a split-plot × split-block design whereas the second one a split-
block-plot design (strip-split-plot design). Contexts in which the designs are equally 
efficient and when one of them is more efficient than the other one are presented.  
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1. Introduction 

Experimental designs used in agricultural research for three-or-more factor 
experiments are certain extensions of either the split-plot or the split-block 
design known from literature. Considered here two mixed designs are 
combinations of the designs mentioned above. One of the mixed designs is 
called the split-block-plot (SBP) design (e.g. Ambroży and Mejza, 2002, Mejza 
and Ambroży, 2003). Another term of it is the strip-split-plot design (e.g. 
Gomez and Gomez, 1984). The SBP design is an extension of the split-block 
design in which an intersection plot is divided into subplots to accommodate 
levels of the third factor. Therefore, the third factor is in the split-plot design in 
a relation to row and column treatments (i.e. combinations of levels of two first 
factors). In field and glasshouse trials the SBP designs are commonly used in 
practice. The second mixed design presented here differs only from the SBP 
design in an arrangement of the levels of the third factor. Certain treatments 
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such as types of cultivation, application of irrigation water etc., may be 
necessary to arrange them in strips (rows or columns) across each block. The 
columns (or the rows) of the split-block design should be split into smaller 
strips to accommodate the third factor. In this way, the third factor will be in the 
split-plot design in a relation to the column (row) treatments. As a result, the 
mixed design of the crossed split-plot and split-block designs is called the split-
plot × split-block (SPSB) design (e.g. LeClerg et al., 1962, Ambroży and 
Mejza, 2004).  

The aim of this paper is to compare an effectiveness of the two mixed 
designs under mixed linear models in the context of an estimation of certain 
groups of contrasts. Those considerations refer to incomplete designs with 
orthogonal block structure as well as complete designs. A design is treated as 
incomplete if the numbers of special experimental units, i.e. rows, columns, 
plots in blocks to accommodate the factors are smaller than the numbers of their 
levels. We can also say, that the design is non-orthogonal with respect to those 
types of the treatments. 

2. Assumptions and notations 

Let us consider a three-factor experiment in which the first factor, say A, has 
s levels A1, A2, ..., As, the second factor, say B, has t levels B1, B2, ..., Bt and the 
third factor, say C, has w levels C1, C2, ..., Cw. Thus, the v (= stw) denotes the 
number of all treatment combinations in the experiment.  

In the SBP design we assume that experimental material can be divided into 
b blocks. Every block forms a row-column design with k1 rows and k2 columns. 
Then, each intersection plot (called a whole plot) can be divided into k3 
subplots. Here the rows correspond to the levels of the factor A, termed as row 
treatments, the columns correspond to the levels of the factor B, called column 
treatments, and the subplots are to accommodate the levels of the factor C, 
termed as subplot treatments.    

In the SPSB design every block also forms a row-column design with k1 
rows and k2 columns of the first order, called I-columns for short. Then each 
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I-column has to be split into k3 columns of the second order (called II-columns). 
In this case, the rows also correspond to the levels of the factor A, termed as row 
treatments, the I-columns correspond to the levels of the factor B, termed as 
I-column treatments, and the II-columns are to accommodate the levels of the 
factor C, termed as II-column treatments. Therefore, n (=bk1k2k3) denotes a 
number of the subplots, required in both designs. 

3. Linear models 

Consider randomization models of observations, the forms and properties of 
which are strictly connected with the performed randomization processes in 
experiments. The randomization scheme of the SBP design consists of the four 
randomization steps performed independently, namely by randomly permuting 
blocks, rows, columns and subplots. Next the randomization scheme used in the 
SPSB design also consists of the four randomization steps performed 
independently, that is by randomly permuting blocks, rows, I-columns and 
II-columns. The resulting mixed models of the SBP and SPSB designs can be 
written in the following form:  

ττττ∆∆∆∆′=)E(y , )()Cov( γVy = ,   (1) 

where ∆∆∆∆′  is a known design matrix for v  treatment combinations, and τ 
( 1)v×  is the vector of fixed treatment combination effects. According to the 
orthogonal block structure of the designs, the dispersion matrix )(γV  can be 
expressed by ∑

=
=

m

f
ff

0
)( PV γγ  (m = 5 for the SBP design or m = 6 for the 

SPSB  design), where fγ  (≥0) are unknown stratum variances and { fP }  
constitute a set of known pair-wise orthogonal projectors adding up to the 
identity matrix (e.g. Ambroży and Mejza, 2002, 2004).  

In the SBP design   

2
0 eσγ = , 22

13211 ekkk σσγ += , 22
2322 ekk σσγ += ,  

22
3313 ekk σσγ += , 22

434 ek σσγ += , 22
55 σσ e+=γ                         (2) 
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where 2
fσ  (f = 1,2 ,...,5)  denote, respectively, variance components related to 

the blocks, the rows, the columns, the whole plots, the subplots and 2eσ  denotes 
a variance of technical errors.  

In the SPSB design  

2
0 eσγ = , 22

13211 ekkk σσγ += ,  22
2322 ekk σσγ += ,  

22
3313 ekk σσγ += , 22

414 ek σσγ += , 22
535 ek σσγ += ,                       (3) 

22
6 eσσγ +=6 ,  

where 2
fσ  (f = 1,2 ,...,6)  denote, respectively, variance components related 

to the blocks, the rows, the I-columns, the II-columns, the whole plots, the 
subplots and 2

eσ  - how above. 
The models (1) can be analyzed in accordance with the methods developed 

for multistratum experiments. The range space ℜ { fP }  of fP  , f = 0,1, .., m, 
is termed the f-th stratum of the model (e.g. Houtman and Speed, 1983).  

In the SBP design there are five main strata connected with an estimation of 
the contrasts: an inter-block stratum (1), an inter-row (within the blocks) 
stratum (2), an inter-column (within the blocks) stratum (3), an inter-whole plot 
(within the blocks) stratum (4) and an inter-subplot (within the whole plots) 
stratum (5).  

In the SPSB design there are six main strata: an inter-block stratum (1), an 
inter-row (within the blocks) stratum (2), an inter-I-column (within the blocks) 
stratum (3), an inter-II-column (within the I-columns) stratum (4), an inter-
whole plot (within the blocks) stratum (5) and an inter-subplot (within the 
whole plots) stratum (6). Additionally, in both models, there is the so-called 
zero stratum (0) connected with mean estimation only. 

The statistical analysis of such models is connected with algebraic 
properties of stratum information matrices for the treatment combinations, fA  
(e.g. Ambroży and Mejza, 2002, 2004). The eigenvalues of them, say fhε , are 
identified as stratum efficiency factors of the design with respect to a set of 
orthogonal contrasts defined by the eigenvectors of these matrices. In complete 
designs (i.e. when k1=s, k2=t , k3=w) certain groups of the contrasts are 



 
 
 
 

The relative efficiency of split–plot×split–block & split–block–plot designs 

 

 33 

estimated in one stratum only, appropriate for them, with full efficiency, then 

fhε =1. We can express it using an abbreviation as follows. 
Let Mf{ q, 1}  denote the property that q contrasts among levels of factor M 

(or interaction contrasts) are estimated with full efficiency ( fhε  = 1) in the f-th 
stratum. In other words, we say that the design is Mf { q, 1}  - orthogonal (e.g. 
Mejza and Ambroży, 2003, Ambroży and Mejza, 2004). 
Corollary 1. The complete SBP design is: A2{ s−1, 1} - orthogonal, B3{ t−1, 1} - 
orthogonal, C5{ w−1, 1}  - orthogonal, 4)( BA× {( s−1)(t−1), 1} - orthogonal, 

5)( CA× {( s−1)(w−1), 1} - orthogonal, 5)( CB× {( t−1)(w−1), 1} - orthogonal 
and 5)( CBA ×× {( s−1)(t−1)(w−1), 1} - orthogonal.  
Corollary 2. The complete SPSB design is: A2{ s−1, 1} - orthogonal, B3{ t−1, 1} 
- orthogonal, C4{ w−1, 1}  - orthogonal, 5)( BA× {( s−1)(t−1), 1} - orthogonal, 

6)( CA× {( s−1)(w−1), 1} - orthogonal, 4)( CB× {( t−1)(w−1), 1} - orthogonal 
and 6)( CBA ×× {( s−1)(t−1)(w−1), 1} - orthogonal. 

4. Efficiency comparison of SPSB designs versus SBP designs 
(complete cases) 

If we plan to carry out an experiment in one of these designs, it is necessary 
to take into account a research problem, an available experimental material and 
first of all technical reasons. It is also necessary to think, when we lose and 
when we benefit from estimation of the treatment parameters using the SBP 
design, relatively SPSB design, with the same number of experimental units. To 
examine the effectiveness of both considered designs in the context of point 
estimation we can use the relative efficiency introduced by Yates (1935) as 
comparison of the accuracy of the estimation (e.g. Hinkelmann and Kemptorne, 
1994, Hering and Wang, 1998, Wang, 2002, Wang and Hering, 2005, Shieh and 
Jan, 2004).  
Definition 1. Let Γ1 and Γ2 denote any experimental designs, then relative 
efficiency of these designs (Γ1 versus Γ2) is defined as:  
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1

2
21 Var

Var
)/(RE

Γ
Γ=ΓΓ     (4) 

where Var Γ1 and Var Γ2 denote variances of the same contrast in both designs. 
The relative efficiency as defined in (4) depends on the true stratum 

variances of both designs, which usually are unknown. Moreover, the stratum 
variances are functions of variance components defined during the 
randomization processes. Relations among them allow comparing efficiencies 
of the SSP and SBP designs. Usually the same relations occur among estimates 
of the stratum variances (except for sampling errors). Comparing an efficiency 
of the SPSB design in a relation to an efficiency of the SBP design for an 
estimation of contrasts, in some cases we can use the measure defined in (4) but 
in others we should take into account the estimation of the RE, called empirical 
relative efficiency, which we shall denote by ERE.  

For the SBP design it could be expected that   

22
5

2
4

2
2

2
1 eσσσσσ >>>>     and    22

5
2
4

2
3

2
1 eσσσσσ >>>> , 

which imply the inequalities (see (2)):  

5421 γγγγ >>>     and    5431 γγγγ >>> .    (5) 

For the SPSB design it could be expected that:  

22
6

2
5

2
2

2
1 eσσσσσ >>>>   and    22

6
2
5

2
4

2
3

2
1 eσσσσσσ >>>>> , 

which imply the inequalities (see (3)):  

6521 γγγγ >>>     and    65431 γγγγγ >>>> .    (6) 

Therefore, it can be assumed (except for sampling errors) that estimates of 
variance components fγ̂  in both designs also satisfy the inequalities (5) and 
(6). Next to define the relations between the appropriate errors, located in both 
designs, “blind”  experiments (for example field was sowed one variety) are 
considered. Then ANOVAs for the SBP design and the SPSB design are given 
in the Table 1.  
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We can see from Table 1, that  

(b –1) SBP
1̂γ + b(s – 1) SBP

2γ̂  + b(t – 1) SBP
3γ̂  + b(s – 1)(t – 1) SBP

4γ̂ + 

+ bst(w – 1) SBP
5γ̂ = (b –1) SPSB

1̂γ + b(s – 1) SPSB
2γ̂ + b(t – 1) SPSB

3γ̂ + 

+ bt(w – 1) SPSB
4γ̂ + b(s – 1)(t – 1) SPSB

5γ̂ + bt(s – 1)(w – 1) SPSB
6γ̂   (7) 

 

Table 1. ANOVA of a “blind” experiment 

a)  the SBP design 

Sources DF 
Mean squares 
( fγ̂  = MSEf) 

 (1)  Blocks b –1  1̂γ  =  MSE1 

 (2)  Rows b(s – 1) 2γ̂  =  MSE2 

 (3)  Columns b(t –1) 3γ̂  =  MSE3 

 (4)  Whole plots b(s – 1)(t – 1) 4γ̂  =  MSE4 

 (5)  Subplots bst(w – 1) 5γ̂  =  MSE5 

        Total bstw –1   

 
b)  the SPSB design 

 

 

 

 

 

 

 

 

Sources DF 
Mean squares 
( fγ̂  = MSEf) 

 (1)  Blocks b –1 1̂γ  =  MSE1 

 (2)  Rows b(s – 1) 2γ̂  =  MSE2 

 (3)  I-columns b(t – 1) 3γ̂  =  MSE3 

 (4)  II-columns bt(w – 1) 4γ̂  =  MSE4 

 (5)  Whole plots b(s – 1)(t – 1) 5γ̂  =  MSE5 

 (6)  Subplots bt(s – 1)(w – 1) 6γ̂  =  MSE6 

        Total bstw –1  
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From (2) and (3), it can be expected that the appropriate stratum variances, thus 
also their estimates, in both designs will be identical (to some extent) 

SBP
1̂γ = SPSB

1̂γ , SPSB
2

SBP
2 ˆˆ γγ = , SPSB

3
SBP
3 ˆˆ γγ = , SPSB

5
SBP
4 ˆˆ γγ = .      (8) 

It was one should underline, that SBP
1̂γ = SPSB

1̂γ = 0, if both designs are 
complete. Thus, (7) simplifies to  

bst(w – 1) SBP
5γ̂  = bt(w – 1) SPSB

4γ̂  + bt(s – 1)(w – 1) SPSB
6γ̂ , 

and hence  

)w(bst

ˆ)w)(s(btˆ)w(bt
ˆ

SPSBSPSB
SBP

1

111 64
5 −

−−+−
=

γγ
γ .   (9) 

The inequality (6) implies that SPSB
4γ̂  > SPSB

6γ̂ . It means that the last error 
(subplot error) in the SBP design is a weighted average between the two errors 
in the SPSB design, i.e.  

SPSB
6γ̂  < SBP

5γ̂ < SPSB
4γ̂ . (10) 

The relations (5) - (10) were applied to examine the empirical relative 
efficiency of the complete SPSB and SBP designs for an estimation of the 
orthogonal contrasts connected with main and interaction effects of the factors. 
In this connection, let }121{ −== vhhK ,...,,:  as well as let KA , KB , KC , KA×B , 
KA×C , KB×C , KA×B×C denote sets of numbers of orthogonal contrasts connected 
with main effects and different types of interaction effects of the factors A, B, C 
and KA ∪ KB ∪ KC ∪  KA×B ∪ KA×C ∪ KB×C ∪ KA×B×C = K 

First let us consider the relative efficiency of both designs for estimation of 
the contrasts connected with main effects and interaction effects of factors A 
and B. Let ,ττττhc′ where h ∈ KA or h ∈ KB or h ∈ KA×B denote this contrast. From 
Corollaries 1 and 2 it follows that these contrasts are estimable, respectively, in 
the inter-row stratum (2), in the inter-column stratum (in the inter-I-column 
stratum if a SPSB design is used) - (3) and in the inter-whole plot stratum (in 
the SBP design it is the fourth stratum and in the SPSB design - the fifth one) in 
both complete designs. From (8) we have, that suitable stratum variances are the 
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same for above-mentioned sets of contrasts. So, in this case it is meaningless if 
the variances are known or not. We have then 
Corollary 3.  A measure of the efficiency of a complete SPSB design relative to 
a complete SBP design (with the same number of experimental units) for each 
h -th contrast, where h ∈ KA ∪ KB ∪ KA×B  is as follows  

A
hRE  (SPSB/SBP) = B

hRE  (SPSB/SBP) = BA
h

×RE  (SPSB/SBP) = 1. 

The next corollary defines the effectiveness of the SPSB and SBP designs in 
the estimation of the orthogonal contrasts among main effects of the factor C 
and the interaction contrasts of B C×  type. From Corollaries 1 and 2 follows 
that in a complete SPSB design these comparisons are estimable in the inter-II-
column stratum (4), however in a SBP design - in the inter-subplot stratum (5). 
Let ,ττττhc′ where h ∈ KC or h ∈ KB×C denote this contrast. Then, from relation 
(10) it follows that  
Corollary 4.  A measure of the efficiency of a complete SPSB design relative to 
a complete SBP design (with the same number of experimental units) for each 
h -th contrast, where h ∈ KC ∪ KB×C  is  following  

C
hERE (SPSB / SBP)  =  CB

h
×ERE (SPSB / SBP) = 

= 

])[(Var

])[(Var

4
SPSB

5
SBP

∧∧

∧∧

′

′

τc

τc

h

h  = 
SPSB
4

SBP
5

ˆ

ˆ

γ
γ

< 1. 

The last conclusion concerns the relative efficiency of the considered 
designs for the estimation of the interaction contrasts of types A C×  and 
A B C× ×  as well. From Corollaries 1 and 2 we know that full information 
about these contrasts is in the inter-subplots, i.e. respectively in the sixth and 
fifth stratum of SPSB and SBP designs. Let ,ττττhc′ where h ∈ KA×C or h ∈ KA×B×C  
denote interaction contrast. Consequently, from the relation (10) it follows that  
Corollary 5.  A measure of the efficiency of a complete SPSB design relative to 
a complete SBP design (with the same number of experimental units) for each 
h -th contrast, where h ∈ KA×C ∪ KA×B×C  is 
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CA
h

×ERE (SPSB / SBP)  = CBA
h

××ERE (SPSB / SBP) = 

= 

])[(Var

])[(Var

6
SPSB

5
SBP

∧∧

∧∧

′

′

τc

τc

h

h  = 
SPSB
6

SBP
5

ˆ

ˆ

γ
γ

 > 1. 

5. Conclusions 

1) The efficiency of a complete SPSB design relative to a complete SBP 
design with the same number of experimental units (= n) was investigated. 
We obtained as follows: 
a) Both compared designs are always equally effective for estimation of  

the contrasts among main effects of the factors A and B and the 
interaction effects of the BA×  type, i.e. a precision of their estimation 
is the same in both designs (Corollary 3).  

b) For the estimation of the contrasts connected with main effects of factor 
C and its interaction effects connected with factor B the SBP design is 
more effective than the SPSB design. Hence, the accuracy of 
comparisons estimation of these treatment parameters is usually bigger 
in the SBP design than in the SPSB design (Corollary 4).  

c) Next, the SPSB design is more effective than the SBP design in the 
estimation of the interaction contrasts of types CA×  and CBA ×× . 
The accuracy of comparisons estimation of these treatment parameters 
is usually bigger in the SPSB design (Corollary 5).  

2) The above-mentioned conclusions cannot be generally extended over all 
(planned) incomplete designs, i.e. when sk <1  or/and tk <2  or/and wk <3 . It 
is known that the variance of a contrast estimator in a general model is a 
function of variances of BLUEs of the contrast in strata (e.g. Searle, 1971). The 
form of this function depends on unknown stratum variances, fγ  and stratum 
efficiency factors fhε . Although there are certain relations among them (see (5) 
and (6)) as well as stratum efficiency factors sum up to one, 1=∑

f
fhε , there is 

no connection among variances of the stratum estimators. Therefore, we can 
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compare efficiencies of the incomplete designs generated by the same method, 
in suitable strata only, in which the given contrast is estimable. If the generating 
designs for one or more factors are efficiency balanced (in particular BIB 
designs), it could be expected that main (though not only) sources of 
information about the contrasts will be identified with the strata as in the 
complete SPSB and SBP designs. From the fact  that the generating designs at 
the factors  are the same respectively in both mixed designs, we obtain that 
corresponding stratum efficiency factors are identical in the mixed designs. 
Conclusions then concerning the relative efficiency of the incomplete SPSB 
design versus the incomplete SBP design in the strata with the largest number 
(suitable for an estimable contrast) agree with the conclusions in (1a)–(1c). 

6. A practical example 

To illustrate the theory presented in the paper, consider 2 × 5 × 2 
experiment designed to test the effects of two (s = 2) levels of nitrogen 
fertilization (kg/ha) A1 - 90, A2 - 150 and two (w = 2) chemical preparation - 
growth regulator (kg/ha) C1 - 0 , C2 - 2 on the grain yields of five (t = 5) wheat 
varieties B1 - Grana, B2 - Dana, B3 - Eka Nowa, B4 - Kaukaz, B5 - Mironowskaja 
808. Original experiment was carried out in Słupia Wielka (Poland) in the 
complete SPSB design, in three blocks (replications). Then for a comparing, the 
same data (table 4) were analyzed under mixed linear model as data from the 
complete SBP design (both analyzes were performed with the help of 
STATISTICA program). The tables 2 and 3 present the ANOVA for the 
complete SBP and SPSB designs, respectively.  

In the Table 2, Error (f) , f = 2, 3, 4, 5 denotes error in the f-th stratum, i.e. 
the row-stratum, the column-stratum, the whole plot-stratum and the subplot-
stratum. In the Table 3, Error (f) , f = 2, 3, 4, 5, 6 denotes error in the f-th 
stratum, i.e. the row-stratum, the I-column stratum, the II-column stratum, the 
whole plot-stratum and the subplot-stratum. In both designs, Error (1) is equal 
to 0 because they are complete. 

 



 
 
 
 

K. Ambroży, I. Mejza 

 

 
 
 
 
40 

 

Table 2. ANOVA for the complete SBP design  

Source Effect SS DF MS F P 
Blocks Random 165.9523 2 82.9762   
A Fixed 302.8507 1 302.8507 102.45 0.0096 
Error (2) Random 5.9123 2 2.9562   
B Fixed 493.6123 4 123.4031 47.09 0.0000 
Error (3) Random 20.9627 8 2.6203   
A x B Fixed 28.7510 4 7.1878 3.13 0.0794 
Error (4) Random 18.3660 8 2.2958   
C Fixed 216.6000 1 216.6000 197.87 0.0000 
A x C Fixed 2.0907 1 2.0907 1.91 0.1822 
B x C Fixed 58.1717 4 14.5429 13.29 0.0000 
A x B x C Fixed 13.6743 4 3.4186 3.12 0.0378 
Error (5)  21.8933 20 1.0947   

 
Table 3. ANOVA for the complete SPSB design  

Source Effect SS DF MS F P 
Blocks Random 165.9523 2 82.9762   
A Fixed 302.8507 1 302.8507 102.45 0.0096 
Error (2) Random 5.9123 2 2.9562   
B Fixed 493.6123 4 123.4031 47.09 0.0000 
Error (3) Random 20.9627 8 2.6203   
C Fixed 216.6000 1 216.6000 180.21 0.0000 
B x C Fixed 58.1717 4 14.5429 12.10 0.0008 
Error (4) Random 12.0186 10 1.2019   
A x B Fixed 28.7510 4 7.1878 3.13 0.0794 
Error (5) Random 18.3660 8 2.2958   
A x C Fixed 2.0907 1 2.0907 2.12 0.1763 
A x B x C Fixed 13.6743 4 3.4186 3.46 0.0506 
Error (6)  9.8750 10 0.9875   

 

It can be noticed both from tables 2 and 3 and from Corollary 3 as well that 
for each h-th (h ∈ KA) contrast connected with main effects of the nitrogen 
fertilization (A), for each h-th (h ∈ KB) contrast connected with main effects of 
the wheat varieties (B) and for each h-th (h ∈ KA×B) interaction contrast of type 
A × B both considered designs are always equally effective. 
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Table 4. The data set from the 2 × 5 × 2 experiment 

Blocks A B C Grain yield 

1 90 Grana 0 34.2 

1 90 Grana 2 39.1 

1 90 Dana 0 30.8 

1 90 Dana 2 33.8 

1 90 Eka Nowa 0 31.0 

1 90 Eka Nowa 2 33.5 

1 90 Kaukaz 0 32.3 

1 90 Kaukaz 2 33.5 

1 90 Mironowskaja 808 0 33.5 

1 90 Mironowskaja 808 2 36.0 

1 150 Grana 0 33.2 

1 150 Grana 2 31.0 

1 150 Dana 0 29.8 

1 150 Dana 2 31.5 

1 150 Eka Nowa 0 29.9 

1 150 Eka Nowa 2 30.8 

1 150 Kaukaz 0 28.8 

1 150 Kaukaz 2 35.0 

1 150 Mironowskaja 808 0 28.5 

1 150 Mironowskaja 808 2 30.0 

2 90 Grana 0 39.9 

2 90 Grana 2 40.0 

2 90 Dana 0 42.0 

2 90 Dana 2 43.9 

2 90 Eka Nowa 0 39.0 

2 90 Eka Nowa 2 43.5 

2 90 Kaukaz 0 43.1 

2 90 Kaukaz 2 46.2 

2 90 Mironowskaja 808 0 34.4 
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2 90 Mironowskaja 808 2 36.1 

2 150 Grana 0 42.8 

2 150 Grana 2 41.2 

2 150 Dana 0 32.1 

2 150 Dana 2 35.9 

2 150 Eka Nowa 0 34.0 

2 150 Eka Nowa 2 36.9 

2 150 Kaukaz 0 37.6 

2 150 Kaukaz 2 39.5 

2 150 Mironowskaja 808 0 34.0 

2 150 Mironowskaja 808 2 37.0 

3 90 Grana 0 44.0 

3 90 Grana 2 41.2 

3 90 Dana 0 39.8 

3 90 Dana 2 43.8 

3 90 Eka Nowa 0 39.0 

3 90 Eka Nowa 2 43.8 

3 90 Kaukaz 0 42.2 

3 90 Kaukaz 2 46.0 

3 90 Mironowskaja 808 0 36.3 

3 90 Mironowskaja 808 2 42.5 

3 150 Grana 0 39.8 

3 150 Grana 2 37.2 

3 150 Dana 0 35.6 

3 150 Dana 2 39.7 

3 150 Eka Nowa 0 32.8 

3 150 Eka Nowa 2 35.8 

3 150 Kaukaz 0 35.8 

3 150 Kaukaz 2 39.0 

3 150 Mironowskaja 808 0 34.0 

3 150 Mironowskaja 808 2 37.1 
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Then, for each h-th (h ∈ KC ∪ KB×C) contrast connected with main effects of 

the growth regulator or an interaction contrast of type B × C  

   
C
hERE (SPSB / SBP) = CB

h
×ERE  (SPSB / SBP) = 1

2019.1
0947.1

SPSB
4

SBP
5 <=

MSE

MSE
. 

Lastly, for each h–th (h ∈ KA×C  ∪ KA×B×C ) interaction contrast of type A × C  
or A × B × C 

  
CA

h
×ERE  (SPSB / SBP) = CBA

h
××ERE  (SPSB / SBP) = 1

9875.0
0947.1

SPSB
6

SBP
5 >=

MSE

MSE
. 
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